Market Revolutions

 

Horseshoe Curve, Altoona, Pennsylvania, 1854

Horseshoe Curve, Altoona, Pennsylvania, 1854

The Industrial Revolution transformed America’s economy and social fabric in the late 18th and early 19th centuries.  Northern agriculture shifted from mostly subsistence farming, whereby families grew food and raised livestock for themselves, toward a more market-based system with farmers selling surplus crops and herds.  Industry spurred the Southern plantation system too, setting in motion an emerging conflict of two inter-dependent but politically antagonistic economies, as Southern cotton fed Northern textile mills.

At the same time, communication and transportation underwent revolutions of their own, along with the very way Americans lived.  People started caring what time it was and factory workers had to stay sober all day.  As middle classes emerged in towns and cities, children went to school, washed their hands and quit sleeping in the same room as their parents, while husbands and ministers invented the role of the “traditional housewife.”  Collectively, these changes are known as the Market Revolution, but they were all triggered by industry, which in turn traced to the Scientific Revolution (Chapter 7).

Schematic Newcomen Steam Engine

Schematic Newcomen Steam Engine

Early Industrial Revolution
The Industrial Revolution began in England with advances in mechanical engineering and steam technology and then spread to Germany, France, and the United States.  Mechanical engineers applied the complex gears of watches and clocks on a large scale, driven first by teams of horses, then water wheels and steam.  British engineers like Thomas Newcomen (1705) and Scotsman James Watt (1769), who coined the term horsepower, reinvented and improved upon steam power almost by accident (Greeks discovered the concept in the 1st century CE but didn’t apply it).  Working to pump water from coal mines beneath the water table, they exploited the fact that steam pressure (pink, right) from a coal or wood fire boiler can convert into mechanical energy when pumped through a piston or turbine.

External combustion steam engines drove turbines that could be applied to factories, transportation (locomotives and ships), and communication (printing presses).  Manchester, England was the first industrial city.  With its network of roads and canals, embrace of the scientific revolution, natural resources (coal), dynamic financial markets, naval strength, and overseas empire “on which the sun never set,” Britain was a natural incubator of the industrial revolution.  The revolution spread from there around the world, changing it forever.  That’s the process we saw Alexander Hamilton trying to speed up and Thomas Jefferson trying to slow down in the last two chapters.  The steam engine belongs alongside mastery of fire and the inventions of agriculture and the wheel as a major watershed in human history.  Here’s what happened to world population after mankind first unleashed power beyond that of water turbines and animal muscle. Population Curve

Around the same time, the British inadvertently made a health-related discovery.  When Asian tea became popular as their overseas empire grew, they started boiling water to steep the tea.  Unbeknownst, they were killing pathogens that cause water-borne illnesses.  Even in unboiled water, tea has natural antibacterial qualities.  Tea, then, contributed to a population boom, providing Britain with manpower to work the factories made possible by steam power and mechanical engineering.  And, unlike craftsmen drinking beer as they worked in previous centuries, tea kept workers alert for long shifts.

Richard Arkwright applied new cotton-spinning frames to yarn production.  Soon the British were mass-producing cotton from India in history’s first mechanized factories.  For good measure, they exported textiles back to India, wiping out that country’s garment industry (today, South Asia is once again a major clothes exporter).  In pottery, Josiah Wedgwood facilitated the transition from craftsmanship to machine production and specialized tasks, or separation of labor, that soon characterized most industries (Wedgwood was also an abolitionist and grandfather of Charles Darwin).  The British jealously guarded their technological secrets, keeping engineers from emigrating and even going so far as to search people leaving England for blueprints of spinning looms or steam engines.  They were familiar with industrial espionage as they had stolen the silk-spinning technique made famous at their Derby Mill from Italy.  But the concepts the British were trying to guard were simple enough that they didn’t require elaborate designs.  Engineers could disguise themselves as laborers or just memorize the basic mechanics.  The Industrial Revolution spread to continental Europe and North America.

New England pioneered manufacturing in America in the 1790s and it accelerated when President Jefferson’s 1807 Embargo cut off most European trade.  While opposed by business leaders, his embargo and the War of 1812 had the long-term effect of making the U.S. more self-sufficient.  Even earlier, Engineer Samuel Slater built the first advanced water-powered cotton mill in Pawtucket, Rhode Island for Moses Brown after apprenticing in Jedidiah Strutt’s English stocking mill.  Slater’s industrial espionage earned him the sobriquet “Slater the Traitor” in Britain, but future president Andrew Jackson called him the “father of the American industrial revolution.”  Francis Cabot Lowell snuck detailed power loom blueprints out of England and memorized others, eventually building forty cotton mills outside Boston.  Later on, when Apple and Microsoft didn’t want their technology pirated across Asia, the U.S. argued for intellectual property rights, but not yet.

Spinning Mule, Samuel Crompton, Bolton Museum & Archive Service

Spinning Mule, Samuel Crompton, Bolton Museum & Archive Service

These were the first factories in America, with their Jennys and mules spinning out over 50k miles of fabric per year along the Merrimack River, in Lowell’s namesake town.  Cities like Lowell and Lynn, Massachusetts built industrial compounds that employed girls from surrounding areas, providing them campus-like accommodations with dorms, chapels, and chaperones.  Next came the application of steam, freeing industrialists up to build plants anywhere, not just alongside rivers.

1893 illustration of Oliver Evans' Columbian 1812 Steam Engine (one of the first in U.S.), Library of Congress

1893 illustration of Oliver Evans’ Columbian 1812 Steam Engine (one of the first in U.S.), Library of Congress

Oliver Evans of Delaware not only improved on the steam engine, he also built the country’s first assembly-line type system in his automated flour mill, including conveyor belts, bucket elevators, and Archimedean screw pumps.  In the 1830s, Evans designed a steam-powered horseless carriage, the amphibious Oruktor Amphibolos, the first American attempt at a “car” and the second worldwide behind that of Frenchman Nicolas-Joseph Cugnot (1769).  To top it off, Evans designed the first refrigerator but never built it; Jacob Perkins won the patent for the first vapor compression cycle model in 1834, based on Evans’ idea.  Evans grew lazier as he aged and failed to invent the airplane and split the atom.  Though he was way ahead of his time with the car and conveyor-belt assembly line, steam turbines drove factories across the North by the 1830s.  More so than the improved power looms of the 1790s, steam turbines launched the American industrial revolution.

Oliver Evans' Steam Car, Illustration from "The Boston mechanic and journal of the useful arts and sciences"" Boston : G.W. Light & Co., July, 1834

Oliver Evans’ Steam Car, The Boston Mechanic and Journal of the Useful Arts & Sciences, Boston, G.W. Light & Co., July 1834

Mass Production
Nineteenth-century Americans excelled at mass production, even though conveyor belt-style assembly lines didn’t go mainstream until the early 20th century with the aid of electrical power.  Manufacturers outsourced singular, monotonous tasks like applying outsoles to the insoles of shoes.  Standardized interchangeable parts, pioneered by French artillery (Gibreauval) and musket designers (Blanc) in the 18th century, were the key to mass production.  Some would say the notion went back even further to Gutenberg’s printing presses or the Chinese and Korean movable type process he drew on.  But the idea didn’t really kick in until the late 18th century, especially among millers and arms makers.  The American System of manufacturing, first applied to firearms, used specialized milling machines to crank out parts then assembled them quickly.

Thomas Jefferson knew about the French work from his time in Paris and ordered the U.S. Armory to apply the interchangeable parts idea to guns.  Eli Whitney, inventor of the cotton gin, helped promote and popularize the concept.  He won a contract to make 10k muskets for the War Department in 1798.  After a while went by and they hadn’t seen any guns, some worried politicians made their way to Whitney’s secret barn in New Haven, Connecticut.  According to legend, at least, he demonstrated the process by disassembling ten guns he’d built, mixed the parts, and put them back together.  Skeptics said he actually marked the parts, but the basic idea was sound and well on its way toward becoming reality.  Gunsmiths like Whitney, Simeon North, and Samuel Colt standardized barrel gauges to mass-produce bullets, creating the .22 and .45 caliber, etc.  With common gauges, bullets no longer had to be melted down for individual guns.

Samuel Colt's Armory, Hartford, Ct., 1857, Library of Congress

Samuel Colt’s Armory, Hartford, Ct., 1857, Library of Congress

Machine tools (lathes) and jigs enabled mass production and interchangeable parts.  The key breakthrough in guns came from North’s milling machine, a more maneuverable drill press used to make solid single-piece parts, reducing the need for filing.  Standardized guns made warfare more efficient because parts could be replaced quicker on the battlefield and governments could contract large orders.  The U.S. government hired North to make rifles at their Harper’s Ferry, Virginia armory.  Colt later won a contract to build rifles for the Union in the Civil War and his .44-40 caliber six-shooter revolver was iconic in the Old West, compatible with Winchester rifles for those that carried a long and short gun and used the same bullets.  Just as Johannes Gutenberg got his idea for the printer from a wine press, Colt’s breakthrough for the revolver came at sea observing the ratchet and pawl mechanism on a capstan (for ropes, cables, and hawsers), a version of which he used to rotate gun cylinders.

Ratchet & Pawl

Ratchet & Pawl

Inventors soon applied the standardized parts concept to a host of other inventions, including textiles with the application of sizes.  Prior to that, all clothes (at least those that fit) were tailored, or fitted.  In Connecticut, Frederick Trent Stanley used milling machines to craft hardware and bolts from wrought iron, later merging with his cousin Henry’s Rule & Level Company to form Stanley Works (now Stanley Black & Decker).  In the same state, Eli Terry revolutionized clock making.  One of the most important products to take advantage of standardized parts was Elias Howe’s lockstitch loop sewing machine, which became an important American export and later influenced the invention of film projectors.  Some inventors were purely engineers while others combined engineering and entrepreneurial skills.  In the sewing machine’s case, Isaac Singer was the businessman who cashed in biggest by exporting them overseas. Elias Howe's Sewing Machine

Prior to the early 19th century, the U.S. hadn’t exported much other than crops, but soon its Remington rifles and Singer sewing machines could be seen around the world.  They blazed the trail for Standard Oil cans, Kellogg’s cereal®, and Coca-Cola® later in the century.  The government encouraged inventors like Colt, Howe, and Charles Goodyear by awarding patents: certificates granting short-term monopolies on profits from new inventions.  The term for proprietary rights on patents varies.  Philips-head screws and screwdrivers, for instance, had a patent that lasted from 1934 to ’66, but the Phillips Screw Co. extended the term by slightly modifying the design.  Americans and Europeans revived the Renaissance-Classical patent model during the Industrial Revolution to stimulate ingenuity.

Charles Goodyear, G. P. A. Healy, Brooklyn Institute of Arts & Sciences

Charles Goodyear, G. P. A. Healy, Brooklyn Institute of Arts & Sciences

In Goodyear’s case, he invented vulcanized, or non-melting, rubber by adding sulfur to the natural latex sap from rubber plants.  He bankrupted his family and nearly died of exposure to chemicals experimenting for years in his tiny New York tenement, but Goodyear’s breakthrough invention became a staple of the industrial revolution.  Improved rubber wasn’t just critical to tires years later, but also the numerous gaskets and seals that would’ve otherwise melted in the gears and pipes of factories and their power stations.  Rubber stopped engines from shaking shops or vehicles apart.

Machinery also needed to be oiled and sperm whales provided the necessary lubricant.  Whale hunting out of ports like Nantucket, Massachusetts became one of the big industries of the Market Revolution, critical for lubricants and lamps until the whales were over-hunted and coal-based kerosene filled the void in the mid-1840s, followed by petroleum-based products later (and light-bulbs for lamps).  Whalers drilled holes in the whales’ skulls then lowered young boys into the cavity to extract the spermaceti oil, one of the world’s most sought after commodities.  Ben Franklin, Thomas Jefferson, and Jane Austen wrote by the light of sperm whale oil.  Artificial light changed sleeping patterns as well.  Instead of segmented sleep, separated by an hour or two of wake after midnight, people stayed up later and tried to sleep once through the night.  Spermaceti still lubricated automatic transmissions in American cars up until 1972.  The dangerous drama of Whale hunting lent itself well to literature, most famously in Herman Melville’s Moby Dick (1851) and also Nathaniel Philbrick’s non-fiction In the Heart of the Sea (2000) about the Essex sinking of 1820 that inspired Melville.  A hooked whale tore apart the Essex with its tail, stranding its surviving crew.  Melville likely wrote Moby Dick under the light of sperm whale oil.

Sperm Whaling w. Hand-Thrown Harpoons

Sperm Whaling With Hand-Thrown Harpoons

Deere Plow, 1837, Illinois Museum of Agriculture

Deere Plow, 1837, Illinois Museum of Agriculture

Agricultural Revolutions: North & South
Among the most important of the early patent-winners was blacksmith John Deere’s cast-steel moldboard plow.  Polished steel (or wrought iron) plows improved on more brittle cast-iron technology.  Horse-pulled steel plows allowed farmers to bring 10x as much land under cultivation as they had with the oxen-driven wood plows many still used, making this seemingly simple invention one of the most important of the 19th century.  Steel plows expedited expansion onto the prairie, where thick sods were more difficult to scour properly than eastern soils, which fell off rather than clumping on the moldboard.  Deere obviously wasn’t the only person to whom it occurred that steel-tipped plows would cut through soil easier than wood or hold up better than iron, but he developed the first commercially successful model and wisely situated his plant in Moline, Illinois to take advantage of both the east-west railroad and north-south Mississippi River.  New plows hastened the transition from families simply growing their own food and raising their own livestock to larger operations where farmers grew surplus to sell on a market.

The evolution beyond subsistence farming goes to the heart of what historians mean by the market revolution.  Increasingly, but not suddenly or overnight, labor became a specialized enterprise where most people performed one task and paid others to perform other specialized tasks, and then bought items from stores and traveling peddlers.  Steel plows are a good example of how economic growth can trigger a multiplier effect, creating more jobs without displacing others.  Farmers grew more food, which they traded for money they spent on other consumer goods, employing more people.  Soon, those people needed teachers, lawyers, police, carpenters, etc., creating more employees who spent more money.

Pierre Samuel du Pont de Nemours, Portrait Artist Unknown, Before 1817

Pierre Samuel du Pont de Nemours, Portrait Artist Unknown, Before 1817

That, at least, is the growing pie model of job creation favored by those who argue that economic growth is not a zero-sum game — that’s why it’s growth.  A modern example of such a tailwind is the productivity boost computers have provided most sectors of our economy (also see Moore’s Law).  Critics counter that the pie is finite at any given time, such as in the early 20th century when mechanized agriculture cost people their jobs as tractors displaced sharecroppers in capitalism’s ongoing process of creative destruction.  Automation today displaces jobs even as it grows the companies robots work for.  Others counter that, even if the pie is growing, workers’ relative slice size can still shrink in comparison to the rich.  Still others argue that, either way, the whole model is based on growth, which isn’t environmentally sustainable.

Eighteenth-century French physiocrats, promoters of agriculture as the basis for economic growth, pioneered the multiplier theory.  Physiocrat Pierre Samuel du Pont de Nemours migrated to the U.S. in the early 19th century and worked in weaponry instead of farming.  He and his son founded DuPont gunpowder company in 1802, that supplied the Union Army in the Civil War.

In the 19th century, improved agricultural implements turned the fertile Midwest into a breadbasket.  Farmers harvested corn and wheat on a scale that more than realized Jefferson’s earlier dream of an agrarian empire.  But Jefferson was wrong to juxtapose farming with the industrial revolution because the two overlapped and reinforced each other.  John Deere, Joseph Glidden (barbed wire), and Cyrus McCormick (modifier of the mechanical reaper and founder of International Harvester) were implement manufacturers, not farmers.  Large-scale farming was part of the industrial revolution and its yield fed a growing army of immigrant factory workers.

McCormick Reaper & Twine Binder, Probably McCormick Harvester Co. Advertisement, Front Page of The Abilene Reflector, Kansas, 1884, Library of Congress

McCormick Reaper & Twine Binder, Probably McCormick Harvester Co. Advertisement, Front Page of The Abilene Reflector, Kansas, 1884, Library of Congress

In the South, an important new implement revolutionized agricultural, too, but in a different way.  We’ve already seen how the desire to manufacture cotton clothing more efficiently led to mechanized textile mills in England and the northern U.S.  Now came a simpler hand-held device that made harvesting cotton cheaper and faster.  While working as a Yankee tutor on a Georgia plantation (wealthy Southerners often home-schooled their children), the aforementioned gunsmith Eli Whitney was struck by how time-consuming and tedious it was for slaves to pluck the prickly burrs out of cotton before the cleaned product could be sold.  He built a simple sluice box similar to others he’d seen, this one to drop cotton in.  He called it a cotton engine, or gin.

Cotton Gin, Eli Whitney Museum, Hamden, Ct.

Cotton Gin, Eli Whitney Museum, Hamden, Ct.

Despite being a labor-saving device, the cotton gin paradoxically increased the demand for slaves because it made growing short-staple cotton more profitable.  King Cotton spread from Georgia to East Texas and became the driving force behind the South’s new export economy.  In fact, cotton became the driving force behind the entire American economy, amounting to a larger industry than banking, railroads, and (non-textile) factories combined by the onset of the Civil War.  Southern cotton fueled the northern textile industry, the first major sector of the Industrial Revolution.

Instead of investing in implements like northern farmers, Southern planters bought slaves, including many auctioned off by tobacco growers in the Chesapeake.  The soil nutrients on Chesapeake plantations were depleting, but the Founders’ hope (rationalization?) that slavery would slowly die off on its own because of tobacco’s demise was not to be.  By the mid-19th century, there was over $4 billion worth of slaves in the South, most of them growing cotton and sugar, while others grew rice and tobacco or worked on small farms.

Tom Thumb Replica, First American Built Locomotive Designed by Peter Cooper, Baltimore County Public Library

Tom Thumb Replica, First American Built Locomotive Designed by Peter Cooper, Baltimore County Public Library

Transportation Revolution
The Market Revolution spurred growth of another British invention, the steam locomotive.  George Stephenson came up with the first train in the 1810s, utilizing the locomotive’s chimney to release boiler steam and suck fresh air into the firebox, stoking the fire, which in turn heated the boiler that churned the piston rod that turned the wheels.

In the 1830s, it took people awhile to wrap their heads around anything that moved humans and goods so fast.  One science professor at University College London said that passengers would die of asphyxia because they’d be unable to breathe.  New York governor and future president Martin Van Buren said to Andrew Jackson, “The canal system of this country is being threatened by a new form of transportation known as ‘railroads’…As you may well know, Mr. President, ‘railroad’ carriages are pulled at an enormous speed of 15 miles per hour by ‘engines’ which, in addition to endangering life and limb of passengers, roar and snort their way through the countryside, setting fire to crops, scaring the livestock and frightening women and children. The Almighty certainly never intended that people should travel at such breakneck speed.”  What he really meant was that the Almighty would prefer that railroads not threaten the canal-based economy New York had so heavily invested in the previous decade.

The First Locomotive, Aug. 8th, 1829. Trial Trip of the "Stourbridge Lion," Library of Congress

The First Locomotive, Aug. 8th, 1829. Trial Trip of the “Stourbridge Lion,” Library of Congress

No one died of asphyxia, but they got around faster and soon improved on the 15 m.p.h. clip.  The Allegheny Portage Railroad between Philadelphia and Pittsburgh in 1834 cut travel time between those two cities from 13 days to 13 hours, highlighted by the famous Horseshoe Curve outside Altoona (photo at the top of the chapter).  The first major line, the Baltimore and Ohio (B & O), connected the East Coast to the interior via Wheeling, [West] Virginia in 1853.  But early railroads didn’t have a common gauge, or agreed upon width between the rails, so no integrated freight system developed until around the Civil War.

By the 1820s and 30’s, there was a pressing need to move produce and goods that roads, trails, and railroads could not meet.  There is a saying tracing to the Greek philosopher Plato that necessity is the mother of invention, and this was a case in point.  What good was it to grow 10x more cotton in Mississippi or corn in Indiana if there was no way to get it to other markets?  The Indiana farmer could float crops on a flatboat to New Orleans but then had to break up the boat for firewood and walk home, unable to row upstream.  That could be dangerous, especially dodging thieves and even serial killers like the Hart brothers along the Natchez Trace [trail] in Mississippi.

"New Orleans: Taken from the Opposite Side a Short Distance above the Middle or Picayune Ferry," Painted by W. J. Bennett from a Sketch by A. Mondelli. Engraved by W. J. Bennett, 1841, Henry I. Megarey, New York

“New Orleans: Taken from the Opposite Side a Short Distance above the Middle or Picayune Ferry,” Painted by W. J. Bennett from a Sketch by A. Mondelli. Engraved by W. J. Bennett, 1841, Published by Henry I. Megarey, New York

The application of steam to boats around the turn of the 19th century changed that.  As was the case with trains, steamboat inventors had to overcome some prominent skeptics.  Napoleon Bonaparte asked, “Would you make a ship sail against the wind and currents by lighting a bonfire under her deck? I pray you, excuse me, I have not the time to listen to such nonsense.”  Yet, as the emperor spoke, Robert Fulton’s first commercially viable paddle-driven steamer started running in 1807.

Lloyd, James T. (1856), Lloyd's steamboat directory, and disasters on the western waters..., Philadelphia: Jasper Harding, p. 46.Steamboats were dangerous but effective.  Their boilers could explode (as Napoleon feared) or they could flip over if they snagged river bottoms that shifted due to erosion, a problem worsened by deforestation on the banks from cutting wood to fuel their engines.  In 1849, Abraham Lincoln won a patent for an inflatable device for freeing stuck boats called the Buoying Vessels Over Shoals.  (While Lincoln is the only president to have won a patent, and worked for a time as a patent lawyer on McCormick’s mechanical reaper, branding wasn’t his strong suit.)  For most people, the advantages of steamboats outweighed their risks as they reduced shipping costs and made traveling easier.

Mississippi River Landing, Memphis, Tennessee, 1906

Mississippi River Landing, Memphis, Tennessee, 1906

Majestic, paddle-wheeled boats symbolized the new economic era, the most dramatic and colorful machines yet known to man.  They fascinated young Samuel Clemens growing up in otherwise dull Hannibal, Missouri.  He saw them as his ticket out, working as a depth finder (“marking twain”) and, eventually, a pilot himself.  Later, he embellished his experiences in Life on the Mississippi (1883).  Steamboats moved crops and people up and down America’s first highway system, but most of these rivers ran north and south.  New liquid roads were required to connect the highway system east and west.  So began the American age of canal building.

American Canals, 1820-60, with Erie Canal in Bold, University of Richmond

American Canals, 1820-60, with Erie Canal in Bold, University of Richmond

View Eastbound, Lockport on the Erie Canal by W.H. Bartlett, 1839

View East, Lockport on the Erie Canal, W.H. Bartlett, 1839

The mother of all American canals, and the second biggest anywhere before the Suez (1869) and Panama (1914), was the Erie, which linked the Great Lakes to New York’s Hudson River.  The Chinese Grand Canal, built in the Middle Ages, was the longest.  But the Erie Canal was the greatest engineering project of its time, leading to pioneering methods of felling trees on a mass scale with special screws, cementing the bottom of the shallow four-foot canal with limestone, and building a series of locks to account for the change in elevation between the Great Lakes and upstate New York.  The English had built similar stairs for the Bingley Five Rise Locks on the 127-mile Leeds & Liverpool Canal that opened in 1774.  The Erie Canal’s elevation slowly dropped from west to east.  Horses and even children pulled flat-boat barges along the shallow canal, making it nearly 100x cheaper for farmers, lumberers, and miners to ship goods east than overland.  This sounds unbelievable given what now seems like a rudimentary technique of hauling unpowered barges, but horses can pull 50x more weight across water than across land.Erie Canal Elevations, 1832

Instead of New Orleans becoming the most important port city in America, as Jefferson predicted, New York was now linked to the interior, making it the commercial capital.  Goods flowed both ways, from America’s interior to Europe and vice-versa.  The canal was also located near a major salt mine, allowing easy shipping of that important commodity in either direction (ancient cities were often near both salt licks and water because salt is essential to brain function; it’s also the root of the words salary and salvation).

Erie Canal Connected New York Harbor with Interior Great Lakes Trade

Erie Canal Connected New York Harbor with Interior Great Lakes Trade

Erie Canal Map, 1853

Erie Canal Map, 1853

Western trade fueled the “Big Apple’s” status as the growing center for financial markets, which Alexander Hamilton started in New York City in the 1790s.  And the Erie Canal indirectly helped the Democratic Party forge its status as a trans-sectional party, popular in both the North and South.  New York already had ties to the South through its textile mills manufacturing cotton, and it was the last of the northern states to outlaw slavery in 1820.  Now, it also became known for believing in states’ rights because, after building the canal with their own money, they opposed efforts of other states to tap into federal funds to build their own versions.  Such funding would’ve forced New Yorkers to pay twice.  Southerners, meanwhile, valued states’ rights to protect the right of states to keep slavery legal.

Illinois and Michigan Canal

Illinois and Michigan Canal

Chicago also built canals, connecting its port on Lake Michigan to the Illinois and Des Plaines rivers that flowed into the Mississippi, securing that “Windy City’s” role as a nexus of trade even before it became the railhead of the West a generation later.  Railroads, canals, and its strategic spot at the southwest corner of the Great Lakes turned Chicago into a sprawling agro-industrial complex built around meatpacking, grain processing, farming implements, rail cars, and lumber.

Communication Revolution
Just as more crops and goods necessitated better transportation, better transportation left companies, governments, and armies pining for better communication — to overcome the “tyranny of distance.”  Until the early 19th century, the quickest way to communicate was one human traveling to another by foot, horse, or boat (one exception: a 1.2k-year-old gourd-and-twine phone made by the Chimu of the Peruvian Andes).  Then, with the invention of the electric telegraph by Samuel Morse and others in the 1830s, mankind leaped forward to instant communication by land.  Morse wasn’t the only one working on such technology, but his version utilized just one wire rather than five or six, making the infrastructure easier to build.  Historian Tom Standage wrote, “this shifted the complexity from the hardware to the software.”  To wit: prior to the telephone, which otherwise utilized more or less the same technology, one could only excite electrons by tapping through the line, rather than talking.  Morse’s assistant Alfred Vail developed a tapping telegraphy (the software) that he generously called Morse Code (left), and specialists perfected both sending and receiving messages.  In a typical case of the aforementioned creative destruction of technology, the telegraph no doubt cost work for message boys within cities but also created jobs nationwide for linemen and coders, to say nothing of fueling mass media through newswires (previous chapter) and boosting businesses generally.  Foreshadowing the Internet, Standage discovered that, even before the voice feature of telephones, some telegraphers socialized and dated exclusively with each other, without ever meeting in person.  This was too expensive for most but was most common during downtimes at circuits like the Associated Press (AP).  In 1844, Morse sent the first message, from the old Supreme Court chambers in Washington, D.C. to Baltimore with the famous line: “What hath God wrought!” (Numbers 23:23 KJV)

First Telegraph, Sent by Samuel F. B. Morse From Washington, D.C. to Alfred Vail in Baltimore, 1844

First Telegraph, Sent by Samuel F. B. Morse From Washington, D.C. to Alfred Vail in Baltimore, 1844

What God wrought was a major communications revolution that’s transforming our lives today at a faster pace than ever.  In 1861, Western Union laid the transcontinental telegraph across the country.

Overland Pony Express, George Ottinger, Harper's Weekly, 1867

Overland Pony Express, George Ottinger, Harper’s Weekly, 1867

Three years earlier, after engineers figured out how to properly insulate the wires and spool hundreds of miles of it onto boats with grappling hooks, they laid a trans-Atlantic cable from Newfoundland, Canada to Ireland.  Queen Victoria sent a congratulatory message to President James Buchanan that took 17 minutes to cross.

Grappling Hook for Lifting the Transatlantic Telegraph Cable, on the Great Eastern, 1865, National Maritime Museum, Greenwich, England

Grappling Hook for Transatlantic Cable On Great Eastern, 1865, National Maritime Museum, Greenwich, England

The first attempt worked briefly then went silent when they tried to jump it from 600 to 2000V. There wasn’t much they could do at that point other than start over and lay a second line, which wasn’t funded and completed until six years later.  The second held and, today, there are dozens of traditional and fiber-optic cables strewn all over the ocean floors.  Someone in Indonesia could read this chapter on such a cable.  If a shark chewed through that cable, it would just re-route onto another.  Between 2010 and 2015, the number of oceanic cables doubled. 1858 Atlantic Cable Route

Telegraphs allowed companies to go international and changed how countries conducted diplomacy and war.  The War of 1812, for instance, probably would not have occurred in the age of the telegraph because it didn’t start until after the British and Americans had already agreed to terms back in England.  In the Civil War, armies madly strung up telegraph wires so that their generals could communicate better while opposing sides tried to cut each other’s wires.  Some soldiers put snipped wires on their tongues and their saliva conducted the electricity sufficiently that they could hear code.  By World War I, generals had left the battlefield, retreating back to the telephone station to better coordinate maneuvers.  With telegraphs, empires like the British Empire could grow bigger than the ancient Roman, Greek (Alexandrian), or Mongol versions, which tended to never grow larger than how far horses could travel in a couple of weeks.  Enabled by steamships and telegraphs, the British ruled “the empire on which the Sun never sets.”  Less dramatic, but more important to the economy, smaller companies now had the communicative means to expand.

1901 Eastern Telegraph Undersea Lines

1901 Eastern Telegraph Undersea Lines

Gradually, some of the aforementioned traveling peddlers morphed into big companies.  In Cincinnati, for instance, two brother-in-laws took advantage of that city’s importance as a meatpacking center and gateway west along the Ohio River.  They combined lye with animal fat to mass-produce soap, eventually winning a contract to supply soap and candles to the Union Army during the Civil War.  They used the country’s expanding communication and transportation infrastructure to grow steadily over the course of the next century, eventually becoming one of the world’s biggest corporations.  Today, Procter & Gamble makes common household items like Crisco®, Tide®, Pampers®, and Pepto-Bismol®.

Lithograph Celebrating Daylight Saving, 1918, Library of Congress

Social & Religious Revolutions
Better communication and transportation, along with more factory shifts, necessitated keeping track of hours and minutes.  Today time is such a normal part of our daily routines that it’s nearly impossible to imagine life without it.  But keeping track of time is fairly new to human history.  Farmers traditionally cared a lot about the calendar, but not the clock.  They got up when the rooster crowed or Sun came up and quit working when it got dark.  As we saw above, people often slept in two shifts, separated by a couple of hours in the middle of the night.  With the advent of sperm oil and kerosene lamps, people started to stay up later in the evenings and tried to sleep in one, uninterrupted segment.  With the Market Revolution, boats and trains had to run on time, workers had to clock in and out, and it mattered that noon in one part of the country was different than noon hundreds of miles away – thus the birth of time zones and daylight saving time (DST) first suggested by Ben Franklin, pushed by railroad companies and weather forecasters, and legalized a century later at the end of World War I.  Railroads preferred dozens of times zones based on winding routes and specific switches but, after nationwide disputes over “Sun time” versus “railroad time,” scientists and meteorologists won their case for a few zones based on slightly meandering north-south lines.

Petition of Elizabeth Cady Stanton, Susan B. Anthony, Lucy Stone, and Others Asking for an Amendment of the Constitution That Shall Prohibit the Several States from Disfanchising Any of Their Citizens on the Ground of Sex, Legislative Archives

Petition of Elizabeth Cady Stanton, Susan B. Anthony, Lucy Stone, and Others Asking for an Amendment of the Constitution That Shall Prohibit the Several States from Disenfranchising Any of Their Citizens on the Ground of Sex, 1865, Legislative Archives

The Market Revolution also led more Americans to move into towns, which led to changes in lifestyles ranging from more multi-room homes (with new notions of privacy) to a new role for women in middle-class urban homes: the housewife.  Isn’t that the most traditional role of all for women? you might ask.  Most women in history were farm wives and, as anyone can tell you that’s spent much time on a farm, women don’t spend most of their day indoors.

New in the early 19th century was the domestic sphere, idealized below in Godey’s Lady’s Book.  A proliferation of such magazines and religious sermons powered by new steam-powered presses set the parameters of this new female role, which focused on nurturing children in a protected environment.  Women were guardians of morality, more so than the men who had to lie, cheat, and steal in the competitive worlds of business and politics.  Many of the new prototypical housewives were perfectly happy, of course.  Others were bored with their new roles and, together with the growing number of poorer women working in factories, forged the women’s suffrage (voting) movement.  As traditional English common law coverture doctrines slowly began to erode around 1840, some states, including Mississippi and New York, granted women the right to control their own property.  In many states, though, married women especially (feme covert) had no real legal standing, making them wards of their husbands.  Historians date the real beginning of the Suffragist Movement to the Seneca Falls Convention of 1848, organized by Quakers and Elizabeth Cady Stanton (1815-1902).

From Godey's Ladies Books, March 1850

From Godey’s Ladies Books, March 1850

Suffragists were just one of the many reform groups associated with the Market Revolution.  Workers grew into a potent political force for the first time.  Unlike the 18th century, when most craftsmen had the potential to rise vertically through the apprentice-journeyman-master ladder within a given guild (e.g. blacksmith, butcher, cooper, tanner), most were now stuck permanently on a large factory floor with little hope for advancement.  The same was true of hundreds of others across town, who came to identify with each other more horizontally as working class.  In Europe, some workers considered the radical Marxist option of taking over the factories and farms via a communist government, to “seize the means of production.”  That never happened in America, but the workers’ growing number of votes had to be accommodated one way or another by the party system.  In the 19th century, the Democrats of Andrew Jackson appealed to blue-collar workers primarily, including craftsmen and factory workers to go along with their traditional farming constituents.  There were other third parties dedicated purely to the workers’ cause after the Civil War, like the Workingman’s Party (or “Workies”), International Workers of the World (IWW, or “Wobblies”), and Democratic Socialists.

Growth of DenominationsImproved transportation, communication, and publishing (steam presses) allowed ministers and revivalists to spread their messages more effectively, fueling the latter phase of the Great Awakening in the early 19th century.  Many evangelicals thought Christ would not return until America’s most egregious sins were mollified by abolishing slavery, improving the treatment of prisoners beyond simple incarceration, and curbing alcohol abuse.  Northern evangelicals, many of whom believed in this Second Coming of Christ, fueled a small but important abolition movement.  Among white Christians, abolitionism had been primarily a Quaker cause until then.  The first organization dedicated to the cause, the Pennsylvania Abolitionist Society launched in 1775, consisted mainly of Quakers.

The penitentiary movement, encouraging prisoners to reform and “do penance,” also arose out of the Great Awakening.  The prisoners’ courtyards in Philadelphia’s Eastern State Penitentiary (1829-1971) are something you wouldn’t have seen prior to the 19th century.  It employs a panopticon surveillance system whereby inmates don’t know which guards are watching them at any one time, intended to make them always behave well.

State Penitentiary for the Eastern District of Pennsylvania, Lithograph, P.S, Duval & Co., 1855

State Penitentiary for the Eastern District of Pennsylvania, Lithograph, P.S, Duval & Co., 1855

Steam-powered presses increased book publication generally, allowing for more primary schools.  The Market Revolution made education more important because both merchants and farmers had to be able to read, write, and do arithmetic in order to function in the new more complicated economy.  These fundamentals were sometimes known as the “3 R’s: Readin’, ‘Ritin’ & ‘Rithmetic.”  Family farming hadn’t required literacy prior to the Market Revolution.  Finally, as we saw in the previous chapter, steam-powered printing presses provided cheap newspapers filled with political commentary, as newly eligible men voted.

These changes in women’s roles, incarceration, religion, and education dovetailed with the Market Revolution.  Likewise, the Temperance Movement worked in conjunction with factory owners who could not tolerate drunken workers around machinery.  It was not only dangerous but also reduced profits.  The same is true in the animal kingdom: bees who imbibe too much fermented nectar aren’t allowed back into the hive; guards “bounce” them.  Among humans, employers could work with clergy as bosses only promoted sober workers who attended the right churches.  The same churches stressed the association between alcohol and the devil with the phrase “demon rum.”  Hallucinations during the delirium tremens of withdrawals underscored the demonic association.  Awareness and study of alcoholism took off after the Panic of 1819 because the downturn drove so many merchants, farmers, and investors to despair.  Mainly, though, Americans just drank far more alcohol in the 19th century than today.

Drunkard's Progress, Nathaniel Currier, 1846, Library of Congress

Drunkard’s Progress, Nathaniel Currier, 1846, Library of Congress

The growth of cotton markets that caused the Panic of 1819 was religiously divisive, as well.  Just as northern evangelicals began to oppose slavery, it became immoral to oppose slavery in the South.  Ministers could only find work there if they argued that slavery was pro-Christian and the new Protestant churches that thrived in the Great Awakening — Baptist, Methodist, Presbyterian — fractured along regional lines over slavery in the 1830s and 40’s, even before the breakdown of political parties that finally led to war in 1860-61.

In that way, the Market Revolution provides a classic example of moral relativism, a term often misunderstood as endorsing apathy or lower moral standards.  But moral relativism is a descriptive, not prescriptive, term, describing the way that morals are sometimes contingent (dependent) on, or relative to, historical circumstances.  In this case, white Northerners and Southerners were both mainly Christian Americans who came from the same parts of Europe, but their respective economies dictated opposing moral outlooks on slavery.

Optional Reading & Viewing:
Erie Canal: Clinton’s Big Ditch, Frank Sadowski, Jr.
Into the Deep: America, Whaling & the World, PBS, American Experience
Charles Morris, “We Were Pirates Too: Why America Was the China of the 19th Century”,
Foreign Policy, December 5, 2010